Statistics-Based Adaptive Non-uniform Mutation for Genetic Algorithms
نویسنده
چکیده
A statistics-based adaptive non-uniform mutation (SANUM) is presented for genetic algorithms (GAs), within which the probability that each gene will subject to mutation is learnt adaptively over time and over the loci. SANUM uses the statistics of the allele distribution in each locus to adaptively adjust the mutation probability of that locus. The experiment results demonstrate that SANUM performs persistently well over a range of typical test problems while the performance of traditional mutation operators with fixed rates greatly depends on the problems. SANUM represents a robust adaptive mutation that needs no advanced knowledge about the problem landscape.
منابع مشابه
Airfoil Shape Optimization with Adaptive Mutation Genetic Algorithm
An efficient method for scattering Genetic Algorithm (GA) individuals in the design space is proposed to accelerate airfoil shape optimization. The method used here is based on the variation of the mutation rate for each gene of the chromosomes by taking feedback from the current population. An adaptive method for airfoil shape parameterization is also applied and its impact on the optimum desi...
متن کاملAdaptive Neuro Fuzzy Sliding Mode Based Genetic Algorithm Control System to Control of a pH Neutralization Process
In this paper, an adaptive neuro fuzzy sliding mode based genetic algorithm (ANFSGA) controlsystem is proposed for a pH neutralization system. In pH reactors, determination and control of pH isa common problem concerning chemical-based industrial processes due to the non-linearity observedin the titration curve. An ANFSGA control system is designed to overcome the complexity of precisecontrol o...
متن کاملSTRUCTURAL OPTIMIZATION USING A MUTATION-BASED GENETIC ALGORITHM
The present study is an attempt to propose a mutation-based real-coded genetic algorithm (MBRCGA) for sizing and layout optimization of planar and spatial truss structures. The Gaussian mutation operator is used to create the reproduction operators. An adaptive tournament selection mechanism in combination with adaptive Gaussian mutation operators are proposed to achieve an effective search in ...
متن کاملAdaptive Crossover in Genetic Algorithms Using Statistics Mechanism
Genetic Algorithms (GAs) emulate the natural evolution process and maintain a population of potential solutions to a given problem. Through the population, GAs implicitly maintain the statistics about the search space. This implicit statistics can be used explicitly to enhance GA’s performance. Inspired by this idea, a statistics-based adaptive non-uniform crossover (SANUX) has been proposed. S...
متن کاملSolving the Ride-Sharing Problem with Non-Homogeneous Vehicles by Using an Improved Genetic Algorithm with Innovative Mutation Operators and Local Search Methods
An increase in the number of vehicles in cities leads to several problems, including air pollution, noise pollution, and congestion. To overcome these problems, we need to use new urban management methods, such as using intelligent transportation systems like ride-sharing systems. The purpose of this study is to create and implement an improved genetic algorithms model for ride-sharing with non...
متن کامل